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Overview
Natural systems are often nonperiodic and irregular. To model systems 
such as hydrodynamic flow, Edward Lorenz used a system of PDEs that 
represent the governing laws of hydrodynamical systems. However, 
particular nonperiodic solutions to these equations cannot always be 
determined except by numerical procedures. To do this, we convert the 
system of PDEs into a simplified system of ODEs and use the nonperiodic 
solutions to these equations to develop a simple model of atmospheric 
conditions.  

Saltzman Convection Equations
The flow that happens in a layer of fluid with a depth of H will produce a 
steady state solution if the temperature of the upper and lower layers 
remain constant.  If the temperatures differ or are not constant, the solution 
is unstable and convection will occur.  When no variations in the direction of 
the y-axis occurs and motion is parallel to the x-z axis, then the governing 
equations of the system are:
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Where 𝜓 is a stream function, 𝜃 is the departure of temperature from a 
state of no convection, g is acceleration due to gravity, ∝ is the thermal 
expansion coefficient, v is kinetic viscosity, and k is thermal conductivity.
Certain fields of motion will form when the quantity 𝑅5 = 𝑔𝛼𝐻7Δ𝑇𝑣89𝑘89, the 
Rayleigh number, exceeds the critical value 𝑅: = 𝜋<𝑎8$(1 + 𝑎$)7.

Lorenz Equations
The above system of PDEs give us a model for convection and when the 
solution is unstable, its solutions are non-periodic.  In order to find particular 
solutions to this problem, we can convert the system of PDEs into a system 
of ODEs by expanding 𝜓 and 𝜃 into a double Fourier series. 
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We then isolate these into a single term expansion and take the Jacobian
matrix . Then, integrating the equations numerically returns finite solutions 
rather than infinite ones. Shortening the finite expressions gives us

𝑎(1 + 𝑎$)89𝜓 = 𝑋 2 sin(𝜋𝑎𝐻89𝑋) sin(𝜋𝐻89𝑍)
𝜋𝑅5𝑅:89Δ𝑇89𝜃 = 𝑌 2 cos(𝜋𝑎𝐻89𝑥) sin 𝜋𝐻89𝑧 − 𝑍𝑠𝑖𝑛(2𝜋𝐻89𝑧)

and substituting these expressions into the Saltzman equations returns a 
simplified model for convection currents where the variables x, y, and z are 
dependent on time alone.

𝑋Y = 𝜎 𝑌 − 𝑋
𝑌Y = 𝑋 𝑟 − 𝑍 − 𝑌
𝑍Y = 𝑋𝑌 − 𝑏𝑍

Solving Lorenz Equations
Evaluating the general solution to this system of equations returns the 
characteristic equation:

𝜆7 + 𝜎 + 𝑏 + 1 𝜆$ + 𝑟 + 𝜎 𝑏𝜆 + 2𝑎𝑏 𝑟 − 1 = 0

We want our solutions to be nonperiodic and unstable. If 𝑟 >1, the 
characteristic equation has two complex roots that are purely imaginary 
when 𝑟 = 𝜎(𝜎 + 𝑏 + 3)(𝜎 − 𝑏 − 1)89 and 𝜎 >b+1.  To model this, we choose 𝑟 =28, 
𝜎 =10, b=8/3, and 𝑥_ = (1,1,1) for our initial conditions .  The resulting solution 
returns a chaotic graph that varies greatly depending on initial conditions. 
Using (1,1,1) gives us results that vary from steady state initial conditions. 

Accuracy of Predictions
To see how accurate our model is at predicting the weather, we analyze 
trends in weather patterns in the Hanover area. We examine data such as, 
temperature, precipitation, pressure, wind, and humidity from the Lebanon 
Municipal Airport for our comparison.  When a system transitions to a new 
regime, some of the effects are changes in average temperature, increased
chances of precipitation, and slight increases or decreases in pressure.  
Significant drops or rises in these categories throughout indicate a change 
in the type of weather regime present.  Small fluctuations throughout the 
day are reflected in the Lorenz plot as well when the x and y variables 
remain above or below 0.  Compared to actual data, the model fairly 
accurately predicts transitions in weather patterns for the first few days, 
sometimes only missing changes by less than an hour. Our predictions start 
to become less reliable around the 25th, or  roughly 4 days after the initial 
starting point.  This is most likely due to slightly inaccurate initial conditions, 
the reason for which will be explored in the next section.

Chaotic Behavior
Lorenz systems are deterministic and nonperiodic.  The initial conditions 
determine the behavior of the model, however, minute changes in initial 
conditions greatly impact the outcome of future behavior as time increases 
toward infinity.  To show this, let us suppose the nth maxima of z is equal to 
𝑀D.  If we graph 𝑀D versus𝑀Da9, we find that there is an order to the chaotic 
system. Indeed, our plot of 𝑀D versus𝑀Da9 shows that there is an 
approximate two to one relationship between these two values.

If we imagine an idealized form of the recursion, where the plot is a perfect 
‘tent’ with a slope of 2, then the recursion is satisfied by 𝑀Da9 = 𝑚D ± 2D𝑀_. 
Now, consider two sequences 𝑀_ …𝑀D and 𝑀_

Y …𝑀D
Y and suppose 𝑀_

Y =
𝑀_ + 𝜖.  Then for small 𝜖 we have 𝑀D

Y = 𝑀D ± 2D𝜖.  What this relationship 
shows us is that small modifications result in unstable sequences and every 
one of these sequences is nonperiodic. However, because our results are 
based in simulation, this is not enough to formally prove these conclusions.

Conclusion
The Lorenz equations were instrumental in establishing the baseline for chaos 
theory, or what is known as “the butterfly effect”.  What this system shows us is 
that small changes in initial conditions greatly impact the outcome of solutions as 
time increases. These systems are still deterministic, but lose their insight after a 
relatively short amount of time.  Predicting the weather based on this system is
heavily dependent on the accuracy of the data collected prior to a forecast (in fact 
the initial conditions would have to be exactly accurate for predictions to remain 
valid).  Slight deviations will eventually become incredibly significant as time 
passes. Approximating the present does not approximate the future, and perhaps 
the flapping of a butterfly’s wings will drastically alter the course of events.
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Figure 1                                                                                                     Figure 2
Figures: Figure 1 is a model of the solution to the Lorenz system modeled in MATLAB with 𝜎 =10, b=8/3, and r=28.  It is notable that the paths of the 
graph do not intersect themselves and that the origin (0,0,0) exists in a state of no convection while the two critical points exist in a steady state.
Additionally, these two points are symmetric along the z-axis and called “Lorenz attractors”.  Figure 2 is a graph of the relationship between time and the y 
variable. The changes in maximums represent regime changes in weather systems.

Modeling the Atmosphere Based on Initial Conditions
The solution above provides us with a 3 dimensional model of the system of Lorenz equations.  This 
can be interpreted as a system where shifting from positive to negative y-values represents a 
weather regime change of different systems.  When a regime change occurs, the result is a change in 
overall temperature and chances of precipitation.

The Rayleigh number 𝑟 contains the most initial conditions of the atmosphere.  The critical point of 
the Saltzman equation, when the system becomes nonperiodic, is 𝑅:.  The transformations used to 
arrive at the Lorenz equations, 𝑟 = fg

fh
..  By changing the initial conditions to reflect actual weather data 

in Hanover, NH for April 21, we may be able to predict atmospheric conditions for the next week.  
We keep the variable 𝜎 =10 the same and let a2, which is representative of the wave number of 
convection rolls, equal 1/2 so that b=8/3. This gives us 𝑅: = $iIj

< . Data from NOAA  gives us the 
variables necessary to calculate 𝑅5. Once we calculate 𝑅5 we find that 𝑟 = 37.38. The variables x, y, 
z represent the intensity of convection in the system, the difference in temperature between the 
ascending and descending currents, and the deviation of the vertical temperature profile from 
linearity respectively.  When x and y have the same signs, this indicates that warm air is rising and 
cold air is descending, which is how air behaves in our atmosphere.  Based on this, we choose the 
initial conditions to be 𝑥_ = (.5, 2.3, −.8).  The graph of x, y, z versus time is shown below. 

Figure 3: A graph of the x, y, and z, variables vs time, using 100 time steps in MATLAB.  Initial conditions: 𝜎 =10 ; b=8/3; 𝑟 = 37.38; 𝑥_ = (.5, 2.3, −.8)

Now that we have this information, it is possible to predict future weather patterns by examining 
when the system completes a circuit around one of the attractors.  We can do this using the maxima 
of z, which occur when a circuit around the Lorenz attractors is nearly complete. Variables x and y 
change signs once some critical value is reached in the z graph. In this case, it appears that this 
critical value occurs when the maxima of z is roughly 49.  When this maxima is reached, it should 
represent a regime change in the system. 

Figure 4: A table of predictions
based on the above graph and
maxima of z. Severity is
determined based on how steep
the slope of x and y is when they 
cross the .t-axis  at 0.

Figure 5: When we chart  𝑀D versus𝑀Da9, we can see the 
order within the chaos.  Knowing the nth peak value will 
allow us to calculate the value of the peak n+1, but only for 
a short time. After this time, prediction becomes impossible 
as “chaos” in the system increases.  The line y=x is added 
to the plot for comparison.


