What are continued fractions?

- Continued fractions are a way of expressing real numbers as a series of fractions.
- For a rational number, the continued fraction yields the exact fractional expression of the given number.
- My project dealt with continued fractions of irrational numbers and their relationship to high quality abc-triples.

What are convergents?

• To find each term in the continued fraction expansion of k, take floor(k), $floor(\frac{1}{k-floor(k)})$, ...

•
$$floor\left(\frac{1}{k-floor(k)}\right)$$
, ...
• $floor\left(109^{\frac{1}{5}}\right) = 2$, $floor\left(\frac{1}{109^{\frac{1}{5}}}\right) = 1$, ...

- The nth convergent is the fractional approximation given after taking this process to n steps.
- For irrational numbers, there is no end to this process (because there can be no exact fractional expression), so we are interested in the convergents.

What are abc-triples?

- rad(x) is defined as a function that takes an integer x and removes any repeated factors
 - rad(24) = 6, rad(30) = 30
- The abc-conjecture states that for any positive integers a, b, c, with no common factors and a+b=c, that for all $\varepsilon>0$, there are finitely many triples a, b, c, that satisfy $c< rad(abc)^{1+\varepsilon}$.
- For any abc triple, there is a number q such that $c = rad(abc)^q$, q is called the quality of the abc-triple

Continued Fractions and abc-Triples Ethan Goldman

The continued fraction of π to the 8th convergent

The code I wrote to look for high quality abc-triples

80/3 18963 3 1.44330674451084

A graph of quality abc triple given vs convergent for the first 30 convergents of $109^{1/5}$

n th convergent of 109 ^{1/5}	n th term	abc-triple	Quality
2	2	25+77=109	0.48223
3	I	109+134=35	0.51395
5/2	1	55+363=109*25	0.77757
23/9	4	109*310+2=235	1.62991
1787864/699599	77733	1787864 ⁵ +27692102767989716067 =109*699599 ⁵	0.94804

How are these two things related?

- If the i^{th} term in a continued fraction of a $r^{1/n}$ is very large, then the $i-1^{th}$ convergent, $\frac{e}{d}$, of the continued fractions gives a very accurate approximation of $r^{1/n}$.
- $rd^n e^n$, rd^n , e^n make an abc triple!
- $rd^n e^n$ is small, and rd^n , e^n have lots of repeated factors, so we get a high quality abc-triple!

Why is this important?

- The abc-conjecture states that there are finite abc-triples with $q>1+\varepsilon$.
- Empirical data shows that the abc-conjecture is likely true, with only 241 known abc-triples with q > 1.4, and 3 known with q > 1.6.
- If we continue finding high quality triples (or if we find no more high quality triples), we can get a better idea of the bound of ε and thus be one step closer to proving the abcconjecture!

My research and topics to be continued... (budum pshh)

- I wrote a python code in CoCalc to find abc-triples using this method, compute their quality, and print all abc-triples found with q>1.4.
- Run over a large range. this method found the 1st, 37th, 63rd, 191st, and 198th highest quality known triples.
- A topic for future research would be to find solutions to Pell's equation, $x^2-Dy^2=1$, over a range of D and see if any of the resulting abc-triples are of high quality