
Figure 1: HR Cell Diagram3. Diagram 

of the relative positions of ion 

transporters in the HR and the 

directionality and chemical symbols of 

the ions they move.
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Figure 2: Ion Transport 

Box Model. This is a box 

model of the various 

transporters that move ions 

in and out of the HR gill 

ionocyte. Arrows pointing 

toward a compartment 

signify movement of that 

ion into the cell and arrows 

pointing away from the 

compartments signal ions 

moving out of the gill cell 

into either the surrounding 

water or being carried away 

by the bloodstream. This 

diagram shows the effect of 

different transport pumps on 

the concentration of Na+

within the cell.

Drawing inspiration from the paper by Wallace and Tanenbaum, 

we define the functional forms of the transporters that move two 

ionic species as the product of Michaelis Menten equations:
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These are equations for the transporters using this functional 

form:
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Functional Forms System of Equations

Figure 3: HR Cell Ion Concentration Levels with Varying pH. The above subplot is a compilation of 

results from modeling Na+, K+, HCO3
-, and H+ ion concentrations within Zebrafish HR cells based on 

different external pH values. As pH increased from 2 to 7 all four ion concentrations experienced a variety of 

changes. At low pH levels, suggesting acidic external environments, the concentration of hydrogen ions 

within the cell was comparatively high, while the concentrations of the other ions remained much smaller. As 

pH increased and the external environment of our model became less acidic, the model experienced a smaller 

relative surge in hydrogen concentration. “C” pictures a pH of 4 in which the concentrations of different ions 

are relatively similar and maintained within the same order of 10 in micro-moles per milliliter. In “F”, 

hydrogen ion concentration decreased to an almost trivial amount while the concentrations of the other ions 

remained at the same values as in “A”-“E”. Our results most greatly reflect varying hydrogen ion 

concentration levels with respect to changes in pH. The large increase in hydrogen concentration between pH 

of 4 and 4.5 suggests that the viability of the Zebrafish becomes critically susceptible at an intermediate pH.

As the global temperatures and atmospheric carbon dioxide levels continue to rise, aquatic 

systems are expected to experience considerable drops in pH, or an increase in dissolved 

hydrogen ion concentration.1 These decreases in pH have been shown to cause potentially 

lethal physiological changes in fish, drastically reducing the functionality of their gills as the 

equilibrium concentrations of ions in their gill cells change with changes in hydrogen ion 

concentration.2

➢ HA: An apically localized hydrogen ATPase which 

utilizes ATP hydrolysis to actively pump hydrogen 

ions from the cytoplasm to the extracellular 

environment.

➢ NHE: A sodium-hydrogen antiporter which 

transports sodium ions into the cell and hydrogen out 

of the cell in a one-to-one ratio. 

➢ NBC: A sodium-bicarbonate cotransporter; different 

isoforms of this channel transport different ratios of 

sodium to bicarbonate (either 1:1, 1:2, or 1:3 ions) 

and thus we select the most common and median 

ratio of 1:2 for this model.17

➢ NKA: A sodium-potassium ATPase which utilizes 

ATP hydrolysis to pump two ions of sodium out of 

the cell and three ions of potassium into the cell, 

against both of their concentration gradients.5

➢ CA2 and CA15: Carbonic anhydrases which convert 

bicarbonate and hydrogen ions into carbon dioxide, 

transport carbon dioxide into the cell, and then 

convert the carbon dioxide back into bicarbonate and 

hydrogen ions, thus implicating the carbonic 

anhydrases in both bicarbonate and hydrogen ion 

transfer.

Zebrafish, Danio rerio, are one of the best studied freshwater fish. Zebrafish gills are 

comprised primarily of three types of ionocytes: H+-ATPase-rich cells (HR cells), Na+–K+-

ATPase-rich cells (NaR cells), and Na+–Cl– cotransporter cells (NCC cells), named for the 

ion transporters and enzymes they express.3 As we are concerned with the impact of 

changing pH on ion transfer in these gill cells, we are primarily concerned with the HR 

cells, which are the only cells that pump hydrogen ions. Thus, we will generate a model of 

ion transport in gill HR cells and determine the constants for each relevant ion transporter 

using Michaelis Menten kinetics.

➢Our model assumes that the processes of sodium and ion transport across cells through 

various pumps is similarly maintained across different species of animals. It is important to 

note that this demonstrated effect of extracellular acidity is not necessarily applicable to all 

types of aquatic species. Additionally, we based our models of the concentration of ions in 

cells on the Michaelis-Menten equations for lack of previous literature on the exact 

transport of these ions. 

➢Our model has shown that with drops in pH from 7 (pH neutral water) to 2 (lethal levels of 

acidity), intracellular sodium ion concentrations increased by a factor of five while 

intracellular bicarbonate and potassium concentrations remained the same. 

➢ Intracellular hydrogen ions increased dramatically in response to the decline in pH; this 

significant cell pH decline will likely reach lethal levels, thereby killing the cells. Even if 

lethal pH levels are not attained, zebrafish gill cells will likely flood with water to offset the 

unnaturally elevated sodium concentrations, thereby inducing lysis in some cells and, in 

sufficiently acidic conditions, the fish will eventually die. 

➢Thus, there are two potential mechanisms by which pH drops can induce negative 

physiological changes to fish: by increasing internal hydrogen ions, or sodium ions to lethal 

levels.

➢To further refine this model, we will first define parameters for the relative abundances of 

each of the ion channels on the HR ionocytes to more accurately reflect the ion transport 

rates.

➢We will further validate the parameters for the Michaelis Menten functional forms by 

searching the literature for ion transport analyses in aquatic organism and finding other 

papers that confirm the values we currently are using. Alternatively, if we find different 

values for maximum pumping velocity and the Michaelis constant, we will implement 

those in our analysis.

➢We will explicitly conduct an equilibrium analysis for the various external pH values we 

have considered and we will more thoroughly evaluate the implications of these 

equilibria.

➢We will evaluate the impact of pH on the external dissolved ion concentrations using 

datasets from natural freshwater bodies to more accurately represent the external ion 

concentrations under the various pH conditions.


